Сеть профессиональных контактов специалистов сварки.
             

Полумостовой двухтактный инвертор с ШИМ, с дросселем рассеяния, резонансный

Темы: Сварочное оборудование.

Полумостовые преобразователи применяются в сварочных инверторах достаточно часто. Особенно их любят китайские производители.

И хотя, для получения приличной мощности, они требуют двойных токов, современные IGBT модули позволяют строить сварочные аппараты с достойными характеристиками, именно на основе полумоста. Простота и минимум деталей, надёжность и высокий КПД. Всё это привлекает разработчиков сварочной техники. В этой главе объединены описания трёх типов полумостовых преобразователей, схемы их очень похожи, различия только в принципах управления выходным током, ограничения тока силовых ключей и передачи энергии в нагрузку. Полная принципиальная схема полумостового сварочного инвертора с ШИМ показана на Рис.12.

Сварочник построенный по такой схеме способен отдать в дугу до 130А, частота преобразования 30-40кГц, определяется применяемыми транзисторами. Моточные данные приведены ниже.

Тр.1 Е65, №87 , ЭПКОС

1-9-10 витков, ПЭТВ-2, диаметр 2,5мм;

II - 3+3 витка (6 с отводом от середины), ПЭТВ-2, диметр 2,24 в четыре провода.

Тр.2 Б-22, 2000НМ1

I - 60 витков, ПЭВ-2, диаметр 0,3 мм;

II - 7+7 витков, ПЭВ -2, диаметр 0,56

Тр. 2хК20х12х6, 2000НМ1 одна обмотка 50 витков, ПЭВ-2, диаметр 0,3;

Др.1 К28х16х9, 2000НМ1, 15 витков монтажного провода, 1мм кв.

Тр.З К28x16x9, 2000НМ1

Все 4 обмотки одинаковые, мотаются одновременно, 30-35 витков, МГТФ-0,12.
Фазировка указана точками. Переходим к электрической схеме.
Задающий генератор собран на микросхеме UC3825, это один из лучших двухтактных драйверов, в нём есть всё, защита по току, по напряжению, по входу, по выходу. При нормальной работе его практически нельзя сжечь! Как видно из схемы ЗГ это классический двухтактный преобразователь, трансформатор которого управляет выходным каскадом. Настраивается ЗГ так, подаём питание и частотозадающим резистором настраиваем частоту 30-40к Гц, нагружаем выходную обмотку трансформатора Тр3 резистором 20-30 Ом и смотрим форму сигнала, она должна быть такой как на рис.13.

Мёртвое время или ступенька для IGBT транзисторов должно быть не менее 1,2мкс, если применяются MOSFET транзисторы, то ступенька может быть меньше, примерно 0,5мкс. Собственно ступеньку формирует частотозадающая емкость драйвера, и при деталях указанных на схеме, это около 2мкс. Подключаем к трансформатору Тр.З драйверы силовых ключей и естественно сами ключи. На затворах должны быть сигналы похожие на Рис.14, только в противофазе. При вращении резистора регулировки величины тока (на 8 ноге), длительность затворных импульсов должна меняться от 0 до тах 50%(- dead time).

При подаче положительного напряжения на 9 ногу, в пределах 0-1,5В, происходит примерно тоже самое, но более резко. В нашей схеме ограничение максимального тока ключей происходит через 9 ногу, а плавная регулировка выходного тока через 8 ногу UC3825N. Методика настройки предельно проста, подаём напряжение на блок управления, а к силовому блоку подключаем ЛАТР. Вместо силового трансформатора подключаем лампочку на 200Wх110V, и проверив наличие в затворах управляющих импульсов, начинаем постепенно поднимать напряжение приложенное к силовому блоку. Периодически останавливаясь и проверяя осциллографом, что у нас на лампочке. Если лампочка горит ровно и на экране осциллографа наблюдается картинка, похожая на Рис.13, пробуем регулировать ток. При этом лампочка должна плавно реагировать на поворот резистора, свечение должно меняться от 0 и до мах! Если этого не происходит - разобраться почему. Возможно прийдётся подобрать резисторы вокруг регулятора, ведь именно от них зависит диапазон регулировки выходного тока! На 8 ноге напряжение должно изменяться от +3В до +4В, в это время происходит изменение длительности выходных импульсов от 0 до 50%. Следующим нашим действием, будет отключение лампочки, и подключение на её место силового трансформатора, вторичная обмотка должна быть нагружена лампочкой 100Wх36V. Всё повторяем с самого начала, постепенно ЛАТРом поднимаем напряжение до 220V. Всё должно работать аналогично. Если так и есть, смело подключаем силовые диоды, отключаем ЛАТР, он нам уже не поможет. Включаем напрямую в сеть 220V, без нагрузки, через секунду должно сработать запускающее реле, замкнуть запускающую RC цепочку и подать силовое напряжение на ключи. Реле одновременно является и защитой от длительного режима К3.. Если в момент включения аппарата его выход будет замкнут, реле не включится, и мощность потребляемая аппаратом не превысит 50Вт. И так будет до того момента, пока на выходе сохраняется режим К3.

 

Запускающая RC -цепочка ограничивает ток потребляемый от сети, на уровне 250мА в режиме полного КЗ. Примерно тоже происходит при залипании электрода, конденсатор включенный параллельно реле, определяет время задержки на отключение. Переходим к следующему этапу настройки, для этого нужно запастись реостатом на 5кW сопротивлением 1,0 Ом. Устанавливаем регулятор тока на мах и подключаем балластник (реостат) на выход. Измеряем на нём напряжение, оно должно быть примерно 35-40В, медленно вращаем ручку регулятора тока в сторону уменьшения. Напряжение должно плавно уменьшаться. Следующее наше действие самое ответственное - настройка отсечки максимального тока ключей (защиты). Ставим подстроечный резистор "защита" в среднее положение и уменьшая сопротивление балластного реостата пытаемся найти точку срабатывания, в этот момент возможно появление попискивания в силовом трансформаторе. Делать наоборот, тоесть подстроечником находить положение срабатывания нельзя категорически. Не соблюдение этого обчно приводит к выгоранию ключей! Подстройку резистора защиты можно делать только при отключенной нагрузке! Ну, вот собственно и всё. Если на нагрузке 0,25 Ом удастся получить 26-28В, а на 0,15 Омах будет срабатывать защита, то аппарат будет чудесно варить, но только с удвоителем, или дросселем на выходе. Следующая схема -резонансный полумостовой сварочный инвертор с фазовой регулировкой выходного тока. Полная схема представлена на Рис.15. Такая схема позволяет получать в дуге ток, от 5 до 120А, этого вполне достаточно для нормальной работы электродами диаметром 1,6 - 3,0 мм, при напряжении в сети 210 - 240В.

Ниже представлены данные на трансформаторы и дроссели.

Тр.1 Е65, №87 , ЭПКОС

I-9-10 витков, ПЭТВ-2, диаметр 2,5мм;

II - .3+3 витка (6 с отводом от середины), ПЭТВ-2, диаметр 2,24 в четыре провода.

Тр.2 Б-22, 2000НМ1

I - 60 витков, ПЭВ-2, диаметр 0,3 мм;

II - 7+7 витков, ПЭВ -2, диаметр 0,56

Тр. 2хК20х12х6, 2000НМ1 одна обмотка 50 витков, ПЭВ-2, диаметр 0,3;

Др.1 Ш20х28, 2000НМ 12 витков, ПЭТВ-2, диаметр 2,5 мм, зазор от 0,3 до 0,9мм, подбирается экспериментально.

Др.2 К28х16х9, 2000НМ1, 15 витков монтажного провода, 1мм кв.

Тр.З К28х16х9, 2000НМ1 Все 4 обмотки одинаковые, мотаются одновременно, 30-35 витков, МГТФ-0,12.

Фазировка указана точками. Как видите схема очень похожа на предыдущую, но конструкция силовой части значительно проще! Это объясняется тем, что вся схема работает в резонансе и для переключения транзисторов нужно значительно меньше энергии, чем в схеме с силовым переключением.

 

Переключить ключ в нуле напряжения или тока значительно легче, именно этим объясняется тот факт, что на схеме Вы не увидите драйверов для силовых ключей, нет необходимости и в КСО цепочках (снабберах) защиты, нет защиты от перегрузки по току, функцию ограничения тока выполняет резонансный дроссель и собственная индуктивность рассеяния силового трансформатора.

Процесс настройки тоже немного отличается от настройки инвертора с ШИМ, хотя начало совершенно одинаково, до момента подачи управляющих импульсов в затворы силовых транзисторов.

Поскольку драйверов нет, то и осциллограмма напряжения в затворах будет выглядеть несколько иначе, смотри Рис.16. Как видим, задний фронт имеет довольно плавный спад, это разряжается затвор ключа. Для предыдущей схемы такая форма разряда затворов, была бы смертерльна на 100%! Резонансному преобразователю на это наплевать! Поэтому проверкой формы управляющих импульсов в затворах и ограничимся. Регулятором тока выставим максимальную длительность управляющих импульсов, если этого не сделать, дальнейшая настройка ничего не даст. Настроим задающий генератор на частоту 45кГц, вместо силового трансформатора, последовательно с резонансной КС цепочкой включим лампочку на 100Wх36V.

Вместо силовой сети подключаем ЛАТР, блок управления запитываем от отдельного источника, и начинаем медленно повышать напряжение на силовом блоке. Примерно при 40-50В если лампочка не горит, или горит не очень ярко, делаем остановку и изменяя частоту задающего генератора добиваемся максимальной яркости лампочки. Немагнитный зазор в резонансном дросселе должен быть при этом 0,4-0,5 мм, это примерно 4-6 слоев бумажного малярного скотча. Если всё прошло гладко, меняем лампочку на 100Wх110V и продолжаем повышать напряжение до 220В, периодически подкручивая частоту, если резонанс будет уходить. Это была предварительная настройка.

Отключаем лампочку и подключаем силовой трансформатор нагруженный лампочкой 100Wх 36V. Весь процесс повторяем сначала, постепенно ЛАТРом поднимая напряжение, а частотой подстраивая резонанс, до точки наиболее яркого горения лампы. Всё это необходимо проделать для выявления ляпов и ошибок монтажа, иначе, если подать сразу 220V, и что-то сгорит, никогда не поймёшь почему. Следующий этап, отключаем лампу и подключаем силовые диоды. ЛАТР тоже можно убрать, включаем напрямик в сеть. Через секунду должно сработать запускающее реле и на выходе появится напряжение 46-50В. Для начала надо подключить лампочку 100Wх36V и убедиться, что всё работает устойчиво, посторонних звуков нет. Свечение лампы ровное и регулятором тока плавно меняется от max до min.

Если всё именно так, меняем лампу на балластный реостат 1,0 Ом на 5 КW и продолжаем настройку. Кратковременно подключая нагрузку (1,0Ом) подстраиваем частоту до того момента, когда вольтметр покажет тах напряжение на балластнике, и при вращении частотозадающего резистора в любую сторону, напряжение будет уменьшаться. Примерно это может быть 30-З6кГц, при этом максимальное напряжение будет около 38В. Далее уменьшаем сопротивление нагрузки до 0,5 Ом, и повышая частоту находим максимум напряжения, затем всё повторяем для нагрузки, 0,25 Ом.

 

Все операции по настройке резонанса производить только при максимальной длительности управляющих импульсов! Конечным результатом настройки должно получиться 26-28В на нагрузке 0,25 Ом, и при дальнейшем уменьшении сопротивления нагрузки напряжение должно понижаться. Таким образом, если резонанс будет настроен на нагрузке 0,2 - 0,25 Ом, то именно в этом месте и будет максимум мощности! Максимальный выходной ток полностью зависит от резонансного дросселя, вернее от немагнитного зазора в сердечнике. Чем толще зазор, тем больше ток и выше частота. Это следует помнить, и при монтаже закрепить резонансный дроссель так, чтобы его можно было снять, разобрать и подкорректировать в случае необходимости толщину зазора.

Рабочая толщина зазора может достигать 1 - 1,5мм, но начинать настройку лучше с 0,3- 0,5 мм. Такой зазор сразу ограничит максимальные токи через ключи, и в случае возникновения аварийной ситуации, не даст им сгореть.

Дальнейшее увеличение нагрузки, при неизменной частоте вызовет падение напряжения и снижение мощности. При К3 ток может превышать мах ток дуги в 1,2 -1,5 раза, но напряжение на выходе упадёт до 2-ЗВ, и соответственно мощность не будет выделяться.

Это неоспоримый плюс резонансного инвертора, естественное ограничение мощности. При такой настройке, аппарат не боится режимов КЗ, скорость ограничения тока на порядок выше, чем при самой быстрой параметрической защите. А применение удвоителя напряжения на выходе позволяет зажигать и поддерживать дугу при самых неблагоприятных условиях! На Рис. 17-19 показаны осциллограммы напряжения в затворах ключей при изменении выходного тока в сторону уменьшения, при фазовой регулировке. И ещё один способ настройки резонанса, для продвинутых радиолюбителей.

В разрыв первичной цепи включается токовый трансформатор. Например 50 витков на колечке К28, 2000НМ. Нагружаем аппарат на предельную нагрузку, например 25В и 150А, это примерно 0,17 Ом. Ширину импульса ставим на максимум, частоту заведомо выше резонансной, в нашем случае это примерно 45-50кГц. Подключаем через ЛАТР не более 40-60В. Естественно блок управления питается отдельно, осциллограф подключаем к токовому трансформатору. Картинка выглядит, как разорванная синусоида. Потихоньку опускаем частоту до того момента, когда синусоида склеится в непрерывную линию. Вот и всё! Практически тоже самое можно наблюдать подключившись осциллографом к резонансному конденсатору, или включив последовательно в первичную цепь резистор 0,1 Ом, и подключив осциллограф параллельно ему.

Третий тип полумоста с дросселем рассеяния, представляет собой гибрид между преобразователем с ШИМ и резонансным с частотным или фазовым регулированием.

Его схема ничем не отличается от схемы с ШИМ преобразователем, введена только RC цепочка последовательно с силовым трансформатором, как в резонансном. Но это не резонансная цепочка, а просто цепь ограничения максимального тока.

Конденсатор в этой цепочке является просто симметрирующим и его ёмкость равняется 22мкФх63В, тип К73-16В. Дроссель можно поставить точно такой, как в резонансном преобразователе, от величины его индуктивности зависит максимальная мощность преобразователя.

Copyright. При любом цитировании материалов Cайта, включая сообщения из форумов, прямая активная ссылка на портал weldzone.info обязательна.

.