Сеть профессиональных контактов специалистов сварки.
             

Ферритные стали

(стали ферритного класса)

Темы: Сварка стали.

При содержании ~12 % Сr у безуглеродистых сплавов Fe - Сr критические точки А1 и А3 на диаграмме (см. рис. 1 на странице Хромистые стали) сливаются. При дальнейшем увеличении содержания хрома сплавы не претерпевают превращений. Стали, структура которых соответствует этой области диаграммы Fe - Сr, относят к ферритным.

Хромистые ферритные стали (табл. 1 и 2) во многих агрессивных средах превосходят по коррозионной стойкости хромоникелевые аустенитные стали, не склонны к коррозионному растрескиванию под напряжением.

При дополнительном легировании кремнием и алюминием хромистые стали могут быть использованы для оборудования, работающего в окислительных условиях при высоких температурах.

Другие страницы по теме

Ферритные стали

(стали ферритного класса):

Широкое применение хромистых ферритных сталей с обычным содержанием углерода и азота сдерживается из-за чрезмерной хрупкости их сварных соединений. Высокая чувствительность к надрезу при нормальной температуре делает их непригодными для изготовления оборудования, работающего под давлением, при ударных и знакопеременных нагрузках. Такие ферритные стали используют для изготовления ненагруженных устройств и изделий.

Хорошая свариваемость хромистых ферритных сталей обеспечиваетcя ограничением в иx составе C и N, образующиx твердые растворы внедрения. Стали, с суммарным содержанием ~0,020 % углерода и азота, отличаютcя высокой пластичностью, ударной вязкостью, нe склонны к охрупчиванию пpи сварке. Производство таких сталей возможно в вакуумных печах или с внепечной обработкой (продувкой расплава аргоном или аргон о-кислородной смесью).

Стали, произведенные в открытых печах, вследствие относительно высокого содержания углерода и азота имеют низкую пластичность и ударную вязкость, что затрудняет проведение не только сварки, но и других технологических операций (гибки, вальцовки). Повышению пластичности сталей 08Х 13, 08Х17Т и 15Х25Т способствует их про катка при пониженных температурах (до 820... 850оС). В этом случае относительное удлинение проката увеличивается до A5 = 25 %, а ударная вязкость достигает 80 дж/см2 . Улучшению свойств сталей, как и сварных соединений, способствует также термический отпуск при 760оС.

Сварочный нагрев отрицательнo влияет нa пластичность хромистых ферритных сталей, уcугубляет иx склонность к хрупкому разрушению. Высoкую хрупкость сварных соединений cвязывают c ростoм величины зерна в 3ТВ.

Интенсивный рост зерна при сварке не удается предотвратить и у сталей с низким содержанием углерода и азота. Однако этот процесс не вызывает их охрупчивания в зоне термического влияния. Это свидетельствует о том, что хрупкость сварных соединений хромистых ферритных сталей связана главным образом с содержанием в твердом растворе примесей внедрения.

Образование холодных трещин в сварных соединениях хромистых ферритных сталей обусловлено резким охрупчиванием металла в ЗТВ. В связи с этим сварку, гибку и правку при изготовлении узлов и деталей из сталей с обычным содержанием примесей рекомендуют проводить с нагревом до 150...200оС. Существенному повышению пластичности сварных соединений способствует термический отпуск при 760оС с последуюшим быстрым охлаждением (табл. 4).

Таблица 1. Хромистые ферритные стали : химический состав .

Марка стали C Si Mn Cr Mo S P прочих элементов
08X13 ≤0,08 ≤0,8 ≤0,8 12,0..14,0 - ≤0,025 ≤0,030 ≥6(C+N) Ti
08Х17Т 16,0...18,0 ≤0,035 0,50...0,80 Ti
08Х23С2Ю 1,5... 1,8 0,4...0,7 22,0...24,0 ≤0,015 ≤0,030 Не регламентируется
04Х14Т3Р1Ф (ЧС-82) 0,02...0,06 ≤0,6 ≤0,5 13,0...16,00 0,020 0,025 2,3 ...3,5 Ti, 1,1 ... 1,8 V
ЭП 882-ВИ ≤0,015 ≤0,5 16,5...18,5 1,5...2,0 ≤0,020 ≤0,025 0,15...0,35 Nb
ЭП 904-ВИ ≤0,012 ≤0,3 18 - 0,1 ...0,4 Nb, 2,2 ...3,5 А1
15Х25Т ≤0,08 ≤0,8 ≤0,8 29,0...27,0 ≤0,025 ≤0,035 0,5 ...0,9 Ti

 
Таблица 2. Хромистые ферритные стали : механические свойства, не менее.

Марка стали σв, МПа σ0,2,МПа δ5, % ψ,% KCU, Дж/см2 Примеры использования
08Х13 590 410 20 60 10 Внутренние устройства химических аппаратов
08Х17Т 372 - 17 - -
08Х23С2Ю 490 10 60 Змеевики пиролиза
04Х14Т3Р1Ф 500 320 15 20 10 Стеллажи ядерного топлива,
контейнеры
ЭП 882-ВИ 372 245 22 - 60 Заменитель Сг - Ni аустенитных сталей
ЭП 904-ВИ 440 323 24 Детали высокотемпературного оборудования
15Х25Т - 14 20 Внутренние устройства химических аппаратов

Механические свойства сварных соединений зависят от применяемых сварочных материалов (табл. 4).

При использовании аустенитных сварочных материалов металл шва отличается высокой пластичностью, ударной вязкостью. При сварке однородными с основным металлом сварочными материалами с обычным содержанием примесей внедрения металл шва и сварные соединения отличаются высокой хрупкостью. Лишь в случае низкого содержания примесей в присадочной проволоке при АрДС сталей ЭП 882-ВИ и ЭП 904-ВИ могут быть достигнуты высокие значения пластичности и ударной вязкости у металла шва.

Сварные соединения всех хромистых ферритных сталей коррозионно-устойчивы во многих агрессивных средах. Легирование металла шва ниобием (или титаном) обеспечивает стойкость против межкристаллитной коррозии как в исходном после сварки состоянии, так и после термической обработки.

Таблица 3. Рекомендации по тепловому режиму сварки хромистых ферритных сталей.

Марка стали Температура подогрева, оС Продолжительность хранения до термической обработки, ч Термическая обработка
08Х13 150...250 Не ограничено Отпуск при 680...700оС
08Х13 (плакирующий слой биметалла) без подогрева Не регламентируется
08Х17Т, 15Х25Т 150...200
08Х17Т, 15Х25Т (плакирующий слой биметалла) без подогрева
08Х23С2Ю 200 ...250 Не допускается Отжиг при 900оС
ЭП 882-ВИ, ЭП 904-ВИ без подогрева Не регламентируется

Таблица 4. Способы сварки, сварочные материалы и механические свойства свариых соединеиий хромистых ферритных сталей.

 

Марка стали Способ сварки, сварочные материалы Механические свойства сварных соединений
σв, МПа KCU, Дж/см2
08Х13 Ручная дуговая сварка:
- электроды Э-10Х25Н13Г2 ОЗЛ-6, ЦЛ-25,
Э-10Х25Н13Г2Б ЦЛ-9, Э-08Х20Н15ФБ АНВ-9,
Э-10Х20Н15Б АНВ-10
540 5
  - электроды Э-2Х13 УОНИ-13НЖ, АНВ-1, ЦЛ-51 590
  АДС:
проволока Св-07Х25Н12Г2Т, Св-06Х25Н12ТЮ,
Св-06Х25Н12БТЮ,
флюс АН-26с, АНФ-14, ОФ-6, АН-18
540
  АрДС:
проволока CB-06X25Н12Т, Cв-06Х25Н12БТЮ,
Cв-07X25Н12Г2Т, аргон
08Х17Т РДС:
электроды Э-10Х25Н13Г2Б ЦЛ-9 , УОНИ-10Х17Т.
АДС:
проволока Св-10ХI7Т, флюсы АНФ-6, ОФ-6
440
08Х23С2Ю РДС:
электроды ЦТ-33, ЦТ-38
500
04Х14Т3Р1Ф Электронно-лучевая и лазерная сварка
ЭП 882-ВИ РДС:
электроды Э-10Х25Нl3Г2 ЦЛ-25, ЦТ-45, ЭА-400/10Т.
АрДС:
проволока Св-02ХI8М2Б-ВИ, аргон
372
ЭП 904-ВИ РДС:
электроды ЦТ-52
390 -
АрДС:
проволока Св-02Х19Ю3Б-ВИ, аргон
372 5
15Х25Т РДС:
электроды 3иО-7, ЭА-48М/22, АНВ-9, АН9-10.
АрДС:
проволока Св-07Х25Н 13, аргон
АДС:
проволока Св-07Х25Н13,
флюсы АН-26с, АНФ-14, ОФ-6, АН-16
440 5

ферритные стали

 
 
 
 
 
 

Copyright. При любом цитировании материалов Cайта, включая сообщения из форумов, прямая активная ссылка на портал weldzone.info обязательна.

.